Merge 07a7551e212b5643c8d1c6ed6a685e0c693317a8 into 2ea148c30a07f91ffa37c0aa36af1cf2670441af
This commit is contained in:
commit
0e173bf4dc
@ -20,9 +20,41 @@ public class LatexInlineSample extends MarkwonTextViewSample {
|
|||||||
@Override
|
@Override
|
||||||
public void render() {
|
public void render() {
|
||||||
final String md = "" +
|
final String md = "" +
|
||||||
"# LaTeX inline\n" +
|
"Here are some common mathematical formulas:\n" +
|
||||||
"hey = $$" + LatexHolder.LATEX_BANGLE + "$$,\n" +
|
"\n" +
|
||||||
"that's it!";
|
"Quadratic formula: $$ ax^2+bx+c=0 $$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Pythagorean theorem: $$ a^2+b^2=c^2 $$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Euler's formula: $$e^{ix}=\\cos{x}+i\\sin{x}$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Trigonometric identity: $$\\sin^2{x}+\\cos^2{x}=1$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Taylor series expansion: $$f(x)=\\sum_{n=0}^{\\infty} \\frac{f^{(n)}(a)}{n!}(x-a)^n$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Matrix multiplication: $$C_{i,j}=\\sum_{k=1}^{n}A_{i,k}B_{k,j}$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Riemann hypothesis: $$\\zeta(s)=\\sum_{n=1}^{\\infty} \\frac{1}{n^s}=\\frac{1}{1-p^{-s}}\\prod_{\\text{prime }p} \\frac{1}{1-p^{-s}}$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Euler's identity: $$e^{i\\pi}+1=0$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Fermat's Last Theorem: $$a^n+b^n=c^n$$ has no integer solutions when $$n>2$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Riemann hypothesis: $$\\zeta(s)=\\sum_{n=1}^\\infty\\frac{1}{n^s}$$ has all its zeros on the line $$s=\\frac{1}{2}$$ when $$s=\\frac{1}{2}+it$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Einstein field equations: $$G_{\\mu\\nu}=8\\pi T_{\\mu\\nu}$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Black-Scholes theorem: Any directed graph can be decomposed into strongly connected components\n" +
|
||||||
|
"\n" +
|
||||||
|
"P vs. NP conjecture by American mathematician Andrew Wiles: NP problems cannot be solved in polynomial time\n" +
|
||||||
|
"\n" +
|
||||||
|
"Stirling's formula: $$n!=\\sqrt{2\\pi n}\\left(\\frac{n}{e}\\right)^n$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Mobius inversion formula: $$f(n)=\\sum_{d|n}g(d)\\Leftrightarrow g(n)=\\sum_{d|n}\\mu(d)f\\left(\\frac{n}{d}\\right)$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Fourier series: $$f(x)=\\frac{a_0}{2}+\\sum_{n=1}^\\infty\\left(a_n\\cos\\frac{n\\pi x}{L}+b_n\\sin\\frac{n\\pi x}{L}\\right)$$\n" +
|
||||||
|
"\n" +
|
||||||
|
"Riemann integral: $$\\int_0^\\infty\\frac{x^{s-1}}{e^x-1}dx=\\Gamma(s)\\zeta(s)$$";
|
||||||
|
|
||||||
// inlines must be explicitly enabled and require `MarkwonInlineParserPlugin`
|
// inlines must be explicitly enabled and require `MarkwonInlineParserPlugin`
|
||||||
final Markwon markwon = Markwon.builder(context)
|
final Markwon markwon = Markwon.builder(context)
|
||||||
|
@ -40,12 +40,13 @@ class JLatexInlineAsyncDrawableSpan extends JLatexAsyncDrawableSpan {
|
|||||||
final Rect rect = drawable.getBounds();
|
final Rect rect = drawable.getBounds();
|
||||||
|
|
||||||
if (fm != null) {
|
if (fm != null) {
|
||||||
final int half = rect.bottom / 2;
|
Paint.FontMetricsInt originFont = paint.getFontMetricsInt();
|
||||||
fm.ascent = -half;
|
int diff = rect.height() - (originFont.descent - originFont.ascent);
|
||||||
fm.descent = half;
|
|
||||||
|
|
||||||
|
fm.descent = originFont.descent + diff / 2;
|
||||||
|
fm.ascent = fm.descent - rect.height();
|
||||||
fm.top = fm.ascent;
|
fm.top = fm.ascent;
|
||||||
fm.bottom = 0;
|
fm.bottom = fm.descent;
|
||||||
}
|
}
|
||||||
|
|
||||||
size = rect.right;
|
size = rect.right;
|
||||||
|
Loading…
x
Reference in New Issue
Block a user